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Abstract

Novel Class Retrieval is nowadays of crucial importance to leverage and explore the large
amounts of available unlabeled data. It is defined as the iterative creation of a novel unknown
class-of-interest based on an initial query, while relying on the use of human interaction. We
formulate this problem as an Active Learning-based Relevance Feedback problem, where the
human-in-the-loop periodically intervenes to label a subset of the data to train a one-versus-
all classifier. In this case, the goal of the used Active Learning strategy is two-fold: rapidly
fill the class-of-interest, and ensure that all class patterns are covered. However, most Ac-
tive Learning methods only aim to improve the classifier performances, without considering
the two previous aspects. To this end, we introduce a novel Active Learning criterion that
balances classifier performances and class retrieval efficiency by selecting the most infor-
mative samples with the highest probability of being positive. We also formulate a novel
coverage metric to evaluate retrieval performance. In addition to well-balanced datasets,
evaluation is performed on real-world-like long-tailed datasets, which provide different de-
grees of class-of-interest imbalance. The results show that our criterion outperforms widely
used strategies like Most Ambiguous and Most Positive. We also provide a framework to
help researchers create and experiment with new Active Learning methods in the context
of Novel Class Retrieval.

Figure 1: Retrieval results at iteration 5. The initial query image is in blue, the positive images in green
and the negative ones in red. Most Ambiguous (top): too many negative images. Most Positive (middle):
all positive images but very similar centered instances with very similar background. Positive-First Most
Ambiguous (bottom): all positive diverse images with different backgrounds and dispositions.

1 Introduction

Over the last decades, there has been a remarkable increase in the volume and complexity of available
data. Image data, in particular, are nowadays abundantly stored. However, the annotation process of these
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vast amounts of data is both time-consuming and labor-intensive, which presents a crucial bottleneck when
exploring large-scale datasets. Effectively leveraging this data calls for innovative techniques to identify and
organize meaningful information.

One way users can effectively extract knowledge from such large unlabeled datasets is by searching
for specific patterns and retrieving as many relevant samples as possible. In other words, the user of a
large unlabeled database may be interested in creating a class that follows a certain pattern, say "dogs with
hats", for which the use of off-the-shelf classifiers is inadequate, since predefined classifiers are not trained
on such novel concepts. This problem setup is referred to as Novel Class Retrieval (NCR) |[Leroy et al.
(2022). NCR addresses the problem of creating a new class, called class-of-interest, given an initial query,
from a large unlabeled dataset. It assumes that this class has not been seen before and requires training
a classifier to recognize it within the large data pool. NCR has two key characteristics: 1) it is iterative,
as it continuously refines the classifier’s knowledge about the desired concept, and 2) it is interactive, as
it relies on human input to form this knowledge. As the retrieval progresses, the model presents some
selected samples it deems relevant to the class-of-interest, and seeks further information about this class by
querying the human oracle on their actual relevance. The user provides this Relevance Feedback through
annotations. This setting is particularly well-suited to databases that are specific to an expert field and/or
poorly represented on the web. Examples include audio-visual archives, digitized historical collections and
naturalist databases.

Annotating thousands of examples from an unlabeled dataset is not only expensive, but also rather
tiresome and laborious for the user. To mitigate this, the user’s feedback should be limited to a very small
subset of the data. Active Learning (AL) Settles| (2009) is an excellent solution that allows to only select a
subset of data, thus reducing the annotation cost. AL chooses the most useful samples to acquire labels for,
according to an Active Learning criterion. This process is generally conducted in an iterative fashion, where
batches of samples are labeled and incorporated into the training data of the classifier. Since our setup
involves a human oracle, it is further constrained by a small annotation budget and limited wait times.

Most AL works present novel criteria that are used to select training data in a binary or multi-class
classification context |Settles (2009). In such a context, only the classifier performances are of interest
to evaluate the AL criterion. In the NCR setting, the problem is rather a binary classification one,
with the class-of-interest as the positive class, and the rest of samples as the negative one. However,
classifier performance is not the only factor to consider. We want our criterion not only to 1) select useful
samples to train a strong classifier, but also 2) prioritize samples that belong to the class-of-interest to
improve the user’s satisfaction, and 3) ensure such samples showcase the diversity of visual patterns of the
class-of-interest by belonging to different "sub-concepts" within this class.

AL-wise, one category of AL criteria is based on uncertainty, or ambiguity, and performs well on the
first objective but very poorly on the second. In addition, traditional AL methods have mainly been devel-
oped for relatively large annotation budgets which inherently allows for strong classifiers. Retrieval-wise, the
strategy consisting on querying the most similar samples, or positive samples, checks the second objective
but not so much the first one. Fig. [I] showcases the retrieval results of these criteria. Our main contribution
is a simple but efficient AL criterion that checks all the evaluation boxes for our Novel Class Retrieval
task. We call our criterion Positive-First Most Ambiguous, or PF-MA. PF-MA aims at combining
the two previous selection strategies, by prioritizing the positive samples among the most ambiguous ones.
This provides samples with sufficient information to train the classifier, but also with higher likelihoods of
belonging the class-of-interest.

To check for the quality of the selected samples, classically used metrics |Hameed et al.| (2021); |Sri-
vastava et al. (2023) to evaluate the retrieval task do not take into account the spatial layout of the
class-of-interest and the diversity of the samples. They are mostly based on the number of retrieved items,
disregarding whether these items provide diversified information about the class. On the other hand,
diversity metrics are mostly based on pairwise distances between the samples of the selected sets, or on the
distribution of their similarity scores Friedman & Dieng (2022)). Such metrics 1) only compute the diversity
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of the selected set with regard to the whole feature space, not to the retrieved class, and more importantly
2) do not take into account the difference in the topological structures of the different classes. To this end,
we formulate a novel metric, class coverage, to compute how much of the class-of-interest is actually
covered through the retrieval process.

Another issue is that the class-of-interest might be of any size. This information is not available
during the retrieval loop. Traditional image datasets are often near-perfectly balanced. This leads to a
biased evaluation of the AL criterion as it is only tested on a certain class size. In this paper, we also aim
at analyzing how different AL selection strategies perform on different class sizes and show how well our
novel strategy performs in these conditions.

Our contributions can be summarized as follows:

e A novel simple and efficient Active Learning criterion that performs well for the Novel Class Retrieval
task.

e An evaluation metric for the retrieval task that considers the spatial layout of the retrieved class.

e An evaluation on long-tailed datasets in order to disregard the class size constraint during the Active
Learning process.

e A Novel Class Retrieval framework that allows different types of descriptors, AL strategies and
metrics, that could be useful to reproduce our work and for future research work.

2 Related Work

In this section, we review existing literature relevant to our problem.

Novel Class Retrieval: NCR is defined as the task of iteratively creating a novel class of samples,
unknown beforehand, based on the pattern contained in an initial query. In our case, the query is provided
by the user. Different from Novel Class Discovery [Troisemaine et al.| (2023) that aims at discovering all novel
classes from an unlabeled pool of data, NCR only extracts one class at a time, that fits a certain pattern.
NCR also relates to Few-Shot Learning (FSL) [Song et al| (2023b)), that tries to learn from a very limited
number of labeled examples. FSL tries to infer which already seen class the newly available unlabeled samples
belong to. NCR is different in the way that it tries to retrieve a whole set of samples of the same category
as the query based on feedback, rather than simply affect it to a class based on similarity alone. Another
machine learning task that is closer to NCR is Content-Based Image Retrieval (CBIR) [Long et al.| (2003);
Hameed et al.|(2021); [Srivastava et al.| (2023]). CBIR belongs to a larger scope, that is the Image Retrieval
scope, while relying on an initial content-carrying query. The main difference between CBIR (and Image
Retrieval in general) and NCR is related to the complexity of the expected results, which is the fine-grained
aspect of CBIR, as the retrieved images are most of the time similar replicas of the input query. In the NCR
context, retrieved images do not follow this constraint: the goal is to rather create a class, with different
dispositions, backgrounds and instances of the concept of interest. Despite these differences, CBIR presents
a good proxy for NCR, and the different tools to solve the former task can be used for the latter.

CBIR, and by extension NCR, is comprised of two steps: 1) the feature extraction step to describe the images,
and 2) the retrieval step. For the feature extraction step, initial works primarily used shallow handcrafted
features like color, texture, shape, and key-point descriptors such as SIFT [Lowe| (2004); Ke & Sukthankar,
(2004), SURF Bay et al.| (2006, Fisher Vectors |Perronnin et al.| (2010), etc. However, deep global features
Chen et al.| (2022) extracted from Convolutional Neural Networks Babenko & Lempitsky| (2015]); Tolias
et al.| (2015)); Tzelepi & Tefas| (2016) or Vision Transformers |[El-Nouby et al.| (2021)); [Song et al.| (2023a) now
present a better description capacity for the retrieval. For the retrieval step, similar images to the query are
extracted to be presented to the user.

Of special importance to our problem are the works that employ iterative schemes where a human-in-the-loop
provides Relevance Feedback (RF) during this step, as NCR is by definition an iterative process based on
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human interaction. During such schemes, a classifier is iteratively refined based on the user’s feedback, which
is usually in the form of annotations. The question is how to choose the samples for which the feedback is
informative. Traditional RF tends to select the samples closest to the initial query, in terms of similarity, or
the classifier’s prediction [Ngo et al[ (2016). This form of feedback, called passive feedback, suffers from the
lack of informativeness with regard to the classifier training. However, the passive feedback criterion has the
advantage of rapidly finding relevant samples to the class-of-interest, thus improving the user’s satisfaction
during the process. Our work makes use of this advantage, while introducing enough informativeness to the
classifier. Another subset of RF methods uses AL to answer this question |Tong & Chang| (2001)); Ngo et al.
(2016)).

Active Learning: AL [Settles (2009) is a ML tool that aims at selecting the most useful/informative
samples from an unlabeled dataset to be labeled by an oracle. AL can be used both for classification
and retrieval purposes. When only a limited annotation budget is available, AL strategies show better
performances than random selection. Such strategies can be categorized through their definition of the
informativeness of a sample. This informativeness can be seen as: uncertainty, diversity, representativeness,
committee disagreement, model change, error reduction, variance reduction, etc.

Because of their simplicity and effectiveness, uncertainty-based strategies are of central importance to our
work. Such strategies exploit the uncertainty of the model prediction to select the queried samples. Least
confidence sampling [Lewis & Gale| (1994); [Lewis & Catlett| (1994) uses the probability of the most probable
class, and chooses the samples near the classifier margin, i.e. with a probability close to 0.5. Margin sampling
Scheffer et al. (2001);|Tong & Chang) (2001) computes the difference between the probabilities of the first and
second most probable classes, so that the samples with the lowest difference are selected. Entropy sampling
Shannon| (1948); [Joshi et al.| (2009) uses entropy as an uncertainty measure, and selects the samples with
the highest entropies. These criteria are often used alone, or coupled with other diversity methods |Brinker
(2003); Xu et al.| (2007), which is computationally expensive in our interactive setting. Our work uses the
least confidence sampling approach, but differs from it by tweaking the set of selected samples to take into
account the retrieval component of our NCR problem. Some other AL works Kothawade et al.| (2021)); [Sener
& Savarese| (2017) mainly rely on the representativeness of the unlabeled set by the selected samples. They
try to find the most representative unlabeled subset, that allows for training a classifier whose performance
can achieve that of a classifier trained on the whole dataset. However, the selected samples in the NCR
case should rather cover the class-of-interest, which we have no prior about. This makes such strategies
inadequate to our setup.

A recent line of work incorporates deep learning into the AL domain. Works such as BALD |Gal et al.
(2017), CEAL Wang et al. (2016) and Core-Set |Sener & Savarese| (2017) finetune a neural network rather
than training a lightweight classifier. Such strategies require a relatively large annotation budget in order to
modify the network weights. At each AL iteration, this large batch of annotated samples is included in the
training data, which results in important training times. This is unfeasible in our iterative RF context, as
wait times, and by extension training times, should be limited to seconds, and annotation budgets should not
exceed tens of images. [Aggarwal et al.| (2022)) shows that, in settings similar to ours, using a linear lightweight
classifier shows better results than the finetuning of a neural network. The chosen budget remains larger
than ours, around 200 samples to annotate, but we adopt a similar strategy. We also show that our criterion
outperforms the formulated method in this work, while being conceptually simpler.

3 Methodology

In this section, we first formulate our setup before presenting our novel Positive-First Most Ambiguous
Active Learning selection criterion.
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3.1 Problem Formulation

Our initial data is a set of N unlabeled images {I;};c1,n], encoded using a pretrained neural network ® to
obtain the initial dataset D = {2;};cq1,n):

z; = ®(I;) € R? (1)

To retrieve the class-of-interest, the user provides a first query containing N, positive images, i.e. that
contain the desired concept, and N,, negative images, i.e. different than the desired concept. In this study
we consider very small values of N, and N,, (N, = 1 and N,, = 5 in our experiments) corresponding to a
very limited annotation budget scenario. The provided query is used to initiate a labeled training set Dy,
where positive images are labeled 1 and negative images are labeled 0.

The learning and retrieval loop is then performed for T iterations. In our experiments, we consider
values of T up to T = 25 iterations. Each iteration 1 < ¢ < T is conducted as follows:

1. A classifier f is trained on D; to recognize the class-of-interest, and classify each image as positive,
i.e. in the class-of-interest, or negative, i.e. outside the class-of-interest:

frz e R [0,1] (2)
2. An AL strategy is used to score each sample in D ~\ D;. The scores are ranked in decreasing order.

3. Given an annotation budget b, the top b samples are selected based on their given scores. The
selected set S; contains the samples with the highest scores:

St =A{zi. Yi.eny (3)
where i, € [1, N] and i — i, gives the rank of the i’ sample w.r.t. the decreasing order of the score.

4. The selected samples are annotated by the user and added to the training data:
D;+ D;US,; 4)

As the loop is performed in a interactive manner, where the user labels the selected samples, not only the
wait time of the user before the next set of selected samples should be realistic, of the order of a few seconds,
but also, the amount of selected samples should be easily handled by the user. These constraints impose
the use of a light model for the classifier, as we are in interactive low-annotation budget setting. Like the
work of |Aggarwal et al|(2022]), we use a linear SVM. We, however use a much smaller budget b = 10, where
Aggarwal et al.|(2022) uses b = 200.

3.2 Positive-First Most Ambiguous AL Strategy

As mentioned before, our selection criterion should not only select samples that train a good classifier, but
also ensure that at each iteration, a large number of diverse positive images covering the class-of-interest is
added. Two criteria arise:

e An uncertainty criterion that provides maximum informativeness to the classifier. Because of the
short wait times between iterations, we use the simplest uncertainty criterion which is least confi-
dence, called MA for Most Ambiguous. The score for each sample z; can be written as:

MA(x;) =1—10.5— f(z)] (5)

Also because of the short wait times, we don’t couple MA with any diversity or representativeness
measure. This method guarantees a performant classifier but fails to respect the rapid class filling
requirement. This requirement is of crucial importance, since the human user may decide to stop
before finishing the process. As a result, relevant samples should be presented since the start.
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e A criterion that ensures the selection of positive samples. This strategy is called MP for Most
Positive. The score following this strategy is:

MP(fEi) = f(fEi) (6)

This method allows for fast retrieval, but does not provide enough information to the classifier, as
the selected samples live in subspaces already known by the classifier.

Fig. (top and middle) clearly showcases the advantages and inconvenient of these two strategies: MA
provides very diverse and informative samples, but they are mostly negatives, whereas MP retrieves positive
samples relevant to the class-of-interest, but very similar, therefore lacking novel information.

Our Positive-First Most Ambiguous (PF-MA) strategy relies on the advantages of each the criteria.
The idea is that the selected samples should still be ambiguous to bring enough information, but should
also have more chance to be positive to fill the class-of-interest. Based on these considerations, we formulate
the score of the novel criterion as follows:

PF—MA(:CZ') = MA(xZ) X ﬂ(f(mi)zo_fj)

(7)
+MP(z;) X 1(f(z,)<0.5)

In a more detailed manner:

(8)
+f (i) X L(f(a,)<0.5)

More intuitively, PF-MA distinguishes between the positive most ambiguous samples, and the negative most
ambiguous samples. The positive most ambiguous samples are chosen first, then in case there are not enough
samples to fill the budget b, it selects from the negative ones.

3.3 kNN Acceleration

In the context of large scale databases and a human-in-the-loop search, scoring each sample in D ~\ D;
is computationally intractable while maintaining acceptable wait times. The idea is to reduce the set of
candidates C, to select the samples to label from, and thus that need to undergo scoring. We choose the
new set of candidates based on similarity search, by choosing the samples closest to the already selected
ones. At each step t, the positive and negative selected samples are all stored in D;, and the set of chosen
candidates are the nearest neighbors of the elements of D;:

Ca: U NN(C],]{?) (9)
qeD;
where NN (-, k) is the set of the k nearest neighbors. We use k£ = 200 in our experiments.
Typically, this kNN acceleration is most effective when coupled with hashing methods and index
structures (Joly & Buisson (2008); [Silpa-Anan & Hartley| (2008); Jegou et al| (2010); Lv et al| (2017)) to
speed up the neighbors search. However, in this paper we are mainly interested in studying the effect of

using knn rather than the whole dataset when selecting samples. We have therefore implemented only an
exhaustive search for knn.

4 Experimental Framework

4.1 Data and Experimental Setup

Datasets: Real world datasets frequently suffer from skewed class proportions, also known as class im-
balance. This often results in classifiers having better performances regarding majority classes, whereas
minority classes are overlooked. The problem is that synthetic datasets often used for different tasks do not
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showcase this problem. The classes in such datasets are rather well-balanced. In order to mimic real world
imbalance, new datasets have been created. These datasets have long-tailed class sizes distributions, where
a few classes account for the majority of the dataset, and a larger share of classes represent a very small
number of samples. We make use of such datasets as their imbalance presents a great proxy for the unknown
size of the class-of-the interest. In other words, the user might be interested in creating a class with rather
common pattern present in a relatively large share of the data, or a more unique pattern that only very few
images contain. We use the datasets Cifar100-LT |Cao et al.|(2019) with an imbalance factor of I F = 50,
ImageNet-LT |Liu et al|(2019)) with JF' = 256 and PlantNet300K |Garcin et al. (2021) with IF = 500,
where the imbalance factor is defined as:

I number of images of majority class

number of images of minority class

For comparison and discussion purposes, we also evaluate on balanced datasets including Cifar100
Krizhevsky et al|(2009) and ImageNet Deng et al.| (2009)).

Descriptor models: We use two pre-trained models to describe our images, both of them based on the
ViT-L14 |Dosovitskiy et al. (2020) architecture, but trained via two different frameworks: CLIP |Radford
et al. (2021) and DINOv2 Oquab et al. (2023), as they showcase great performances for other tasks.
The main difference between both frameworks is that DinoV2 model is pre-trained using self-supervision
(on images only), whereas CLIP is pre-trained using contrastive learning on images and associated textual
descriptions (language-supervised). In addition, CLIP could allow for the future use of textual queries.

Initial query: For the retrieval, we randomly select () queries per class, where each query contains N,
positive image and N, negative images. Generally, N, < N, as the user can initially provide very few
positive images, compared to negative ones. We choose () = 10 to ensure diversity within the initial query,
and thus generalization. We set N, =1 and NN,, = 5.

Baselines: We compare our criterion to straightforward baselines as well as more advanced criteria from
the state-of-the-art:

e MA: Most Ambiguous.
e MP: Most Positive.

e DAL: Discriminative Active Learning |Gissin & Shalev-Shwartz (2019). DAL chooses the samples
that are more similar to the unlabeled data than to the labeled data, using a labeled vs. unlabeled
classifier.

o ALAMP Aggarwal et al|(2022)). We choose ALAMP because of its close settings to our problem,
i.e. a small budget and a linear classifier. In brief, ALAMP assigns scores to samples at iteration ¢
as follows:

margi—1(x;) — margy(;)

marg;—1(x;) + marg(z;)

ALAMP(x;) = (10)
where marg;(z;) is the margin sampling score. The margin sampling score is defined as the difference
between between the probabilities of the top-2 predicted classes. The larger the margin score, the
further the probabilities assigned, and the more certain the sample is. As a result, ALAMUP prioritizes
samples that switched from high certainty to high uncertainty. When the difference in uncerainty is
the same, the denominator prioritizes samples with overall low certainty.

We also combine the uncertainty strategies with diversity methods. We choose straightforward diversity
terms, to keep the computation times low:

o *.8 (for step): where * € {MA, MP}. The samples are ensured to be diverse by selecting one sample
each S = 5 samples from the set of ordered samples.
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o *D (for distance): where * € {MA, MP}. A larger number B = 50 of samples is selected using the
uncertainty criterion to form a pool. Then the b samples are selected from this pool by iteratively
sampling the farthest sample from the already selected ones.

Annotation budget: [Aggarwal et al.|(2022) clearly mentions that small budgets (200 annotations) present
a challenge for AL. In our case, the annotations are conducted by the user, making it impossible to annotate
hundreds of samples. Therefore, we further restrict the annotation budget to merely b = 10 samples at each
iteration, for up to T' = 25 iterations, which is even more challenging.

kNN acceleration: Unless mentioned otherwise, the kNN acceleration is used only with ImageNet (the
biggest dataset). We conduct an exhaustive selection for the other datasets.

4.2 Metrics

To evaluate the performance of our novel AL strategy for Novel Class Retrieval, we use two types of
metrics: metrics for the classifier performance, and metrics for the retrieval performance. For the classifier
performance, we use a traditional fl-score on a held-out test set.

For the retrieval performance, a first metric is the proportion of returned positives. For a class-
of-interest C' of size k¢, let Pt be the set of positive samples returned up to the iteration :

pos’ = 20 (11)

However, the number of positives returned does not really reflect how well the retrieval is. One problem of
this metric is that the samples returned can be close to each other, which creates a less diverse class. For
example, the user may be interested in the same object or pattern, but with different backgrounds, states,
or positions. Most alternative retrieval metrics also focus on the number of returned positives (e.g. mean
average precision). A class of metrics that compute diversity of a set of samples rely on the pairwise distances
between the samples. However in the case of differently distributed classes like our case (i.e. some classes
may be concentrated, some may be spread out), a low distance may not always mean a lack of diversity.
Another class, like the Vendi score [Friedman & Dieng| (2022), is based on the entropy of the variances of the
selected set. In other words, the more spread out across different directions a set is, the better its diversity,
and the more concentrated, say across one dimension, the less its score. These metrics are not adequate to
compute the diversity of a subset within a reference set, no matter the structure of this reference set. In our
case, we mainly care that the model queries the user on all regions of the class-of-interest, regardless of its
topology. Thus, the purpose of our new metric is to cover the maximum feature space regions that belong
to our class. If the class-of-interest is scattered, for instance, we would rather have our selected samples
also scattered rather than confined to a sub-cluster of the class. This ensures diversified samples. To this
end, we propose to use a class coverage metric cov”. Therefore, we run a K-means with K = 32 clusters
{CLS;}icn1,x) on the class C samples (this is done offline separately for each class of the whole dataset).
Then, to evaluate a particular retrieval iteration, each returned positive sample is assigned to a cluster. The
class coverage is defined as the proportion of clusters that are assigned at least one positive sample:

OUC . #{CLSAEI S Pt,l‘ € CLSZ}
P =
K

(12)

For a more stable coverage estimation, we actually perform 10 K-means clusterings, then average the results.
For classes with less that K samples, each sample is considered as a cluster.

4.3 Our Framework

We implemented a framework to experiment with and evaluate Novel Class Retrieval. Our framework
includes different datasets, feature extractors, Active Learning strategies and evaluation metrics. It also
allows for the easy addition of new elements for each of these categories. Its use is quite forward as it suffices
to pick a dataset, an extractor and an AL strategy. Different configuration files enable the modification of the
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hyper-parameters. For each retrieval experiment, the framework provides a full summary of the experiment,
as well as computes the different metrics during each retrieval iteration for a detailed evaluation.

5 Experimental Results

5.1 Performance Factors: Search Iterations and Class Size

We start by presenting and analyzing the results with regard to the number of search iterations and the
class-of-interest size. We base our analysis on the dataset ImageNet-LT, using DINOv2 as a feature extractor.

Varying the search iteration: Here we present the retrieval results per iteration. The results are aver-
aged for all classes, and presented in fig. As mentioned before, MA has the best classifier performance,
but does not do well when it comes to filling the class-of-interest. On the other hand, MP has a reversed
behavior. ALAMP seems to behave closely to MA, as it also picks informative samples, with no regard to
their relevance to the class-of-interest. Our method PF-MA presents the best compromise between these
two tasks, while showcasing a great coverage that surpasses all methods. Our method has the best coverage
results, as it first selects samples near the boundary but that are positive. Diversity is encouraged as near
duplicates of the initial query are not selected to start with. During the first iterations, the samples are
mainly located near the boundary, so far from the region where the positive query resides, which allows
our strategy to cover and explore this new region. Moving forward, as the boundary region is now known,
PEF-MA will select samples in between, i.e. not very ambiguous, but closer to positive, which unlocks new
regions in the feature space of our class. This helps span different regions of the class-of-interest. We show-
case through our experiments that the mean score of the selected samples starts at 0.5, and continuously
increases to achieve 0.75 during the later iterations.
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Figure 2: Search results per iteration. Class coverage covy (left). Fl-score (middle). Returned positives
posi(right).

Varying the class size: We analyse the effect of the class-of-interest size on the retrieval performances.
We present the results for iterations 5, 15 and 25 in fig. [3} [fland 5] MP performs well for all metrics for small
classes. As the size increases, however, MP performances decrease for the fl-score and the class coverage.
This demonstrates the lack of diversity of the samples selected by this method. The class-of-interest is
not well covered and the classifier does not perform well on the held-out test set. For larger classes, MA
shows better results, but always struggles to return a competitive number of positives, which doesn’t serve
the retrieval purpose. If we had to choose between MA and MP, the user would need to know the size of
the class-of-interest in advance, and pick accordingly. However, this information is usually impossible to
know beforehand. Our method PF-MA maintains the best performing strategy, no matter the class size, or
the number of search iterations. PF-MA can be applied without any additional prior knowledge regarding
the size. Last but not least, another important advantage of PF-MA is that it presents the best coverage
performances almost everywhere. Also note how DAL have very low results for all configurations. In the
original work, the AL loop is initialized with 5000 samples on which the first is trained, which holds way
more information than we use in our setting.
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In the next sections, we mainly rely on the class coverage metric for the evaluation. On one hand, the
fl-score only measures how good our classifier is, which is not a proxy for the retrieval effiency, as we have
noted with MA. On the other hand, the proportion of returned positives does not provide any idea about
the diversity of the retrived samples. We actually believe that the class coverage is the most appropriate
metric to capture both aspects of the retrieval performance: recall and diversity.

Table 1: Class coverage scores at iterations 5, 15 and 25 for different AL methods, imbalanced datasets
(Cifar100-LT, ImageNet-LT and PlantNet300K) and descriptors.

metric method Cifar100-LT ImageNet-LT PlantNet300K
CLIP DINOv2 | CLIP DINOv2 | CLIP DINOv2
MA 0.402 0.502 0.351 0.423 0.203 0.282
MP 0.41 0.454 0.368 0.396 0.212 0.29
DAL 0.04 0.039 0.043 0.043 0.051 0.05
ALAMP 0.349 0.471 0.289 0.387 0.148 0.235
covs MA-S 0.363 0.442 0.321 0.377 0.188 0.257
MA-D 0.388 0.407 0.327 0.355 0.193 0.284
MP-S 0.381 0.435 0.34 0.381 0.193 0.27
MP-D 0.409 0.429 0.347 0.378 0.198 0.294
PF-MA (ours) | 0.411 0.56 0.36 0.493 0.204 0.298
MA 0.801 0.838 0.76 0.736 0.487 0.59
MP 0.773 0.785 0.713 0.688 0.456 0.537
DAL 0.072 0.066 0.045 0.044 0.053 0.051
ALAMP 0.704 0.83 0.638 0.7 0.318 0.514
covys MA-S 0.775 0.821 0.735 0.722 0.465 0.57
MA-D 0.815 0.74 0.734 0.653 0.48 0.588
MP-S 0.756 0.785 0.694 0.681 0.435 0.523
MP-D 0.774 0.736 0.697 0.647 0.447 0.542
PF-MA (ours) | 0.824  0.915 | 0.773 0.79 0.488  0.604
MA 0.89 0.899 0.852 0.804 0.596 0.678
MP 0.875 0.877 0.821 0.776 0.565 0.628
DAL 0.101 0.096 0.049 0.046 0.055 0.054
ALAMP 0.811 0.892 0.744 0.771 0.406 0.605
covgs MA-S 0.88 0.895 0.844 0.802 0.583 0.671
MA-D 0.903 0.84 0.842 0.751 0.595 0.679
MP-S 0.869 0.882 0.815 0.777 0.552 0.625
MP-D 0.881 0.86 0.816 0.76 0.563 0.639
PF-MA (ours) | 0.908 0.954 | 0.861 0.844 | 0.596 0.684

5.2 Generalization on Other Databases and Descriptors

In this section, we check if our previous results hold in different settings. We report the class coverage scores
at iterations 5, 15 and 25, for both long-tailed and balanced datasets in tab. [I]and [2, We do not perform
ALAMP and the diversity combined strategies on ImageNet due to computation times.

For the imbalanced datasets, our method mostly presents the best results for all datasets and both feature
extractors. Overall, our criterion improves the retrieval results. In almost all cases, the coverage score is
significantly better. In a few cases only, during the first iterations of CLIP, PF-MA shows a slight decrease
in performance. We notice overall better results when using DINOv2 for feature extraction. We also note
larger gains with Cifar100-LT and ImageNet-LT.

For the balanced datasets, we underline the second-best method in tab[2] Although our method was designed
for real-word cases where the size of the class-of-interest varies, we notice that it remains second best in the
worst case, where it is outperformed by MA combined with distance-based diversity. We explain the good
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Table 2: Class coverage scores at iterations 5, 15 and 25 for different AL methods, balanced datasets (Cifar100
and ImageNet) and descriptors.

metric method Cifar100 ImageNet
CLIP DINOv2 | CLIP DINOv2
MA 0.329 0.424 0.247 0.226
MP 0.271 0.182 0.207 0.131
covs DAL 0.034 0.034 0.072 0.056
ALAMP 0.313 0.379 - -
MA-S 0.345 0.431 0.258 0.23
MA-D 0.396 0.464 0.293 0.276
MP-S 0.31 0.224 0.236 0.151
MP-D 0.381 0.28 0.294 0.19
PF-MA (ours) | 0.331 0.432 0.265 0.274
MA 0.731 0.79 0.595 0.565
MP 0.539 0.381 0.416 0.248
covts DAL 0.057 0.052 0.087 0.066
ALAMP 0.712 0.765 - -
MA-S 0.732 0.794 0.597 0.564
MA-D 0.823 0.794 0.671 0.64
MP-S 0.555 0.413 0.429 0.259
MP-D 0.627 0.472 0.506 0.309
PF-MA (ours) | 0.838 0.838 0.607 0.599
MA 0.856 0.882 0.749 0.715
MP 0.696 0.559 0.549 0.332
COVas DAL 0.083 0.078 0.094 0.071
ALAMP 0.85 0.867 - -
MA-S 0.852 0.883 0.749 0.715
MA-D 0.912 0.878 0.813 0.763
MP-S 0.704 0.583 0.555 0.338
MP-D 0.756 0.634 0.618 0.385
PF-MA (ours) | 0.871  0.935 | 0.763  0.742

performance of diversity strategies for these two datasets by the large class sizes (more than 600 images per
class). Beyond the unrealistic setting of balanced datasets, another problem is the computational cost of the
diversity and the iterative choice of the next sample to select. Due to these costs, diversity-based strategies
are unable to scale. Our method, however, offers very acceptable results even in the balanced case, with no
additional costs, which provides a great tradeoff.

5.3 Effect of kNN Acceleration

Here, we ablate the kNN acceleration to study its effect. We conduct the experiments on the smaller datasets,
as the computation time for an exhaustive selection on ImageNet is untractable. We present the class coverage
results for our method at iterations 5, 15 and 25 in tab. [3] The degradation of the results is minimal, and the
acceleration is sometimes even beneficial to the retrieval performance, especially during the first iterations.
We hypothesize that the kNN acceleration improves the results at the beginning of the retrieval due to the
exploration of the region of the feature space surrounding the query, rather than elsewhere, which allows
the SVM a more comprehensive knowledge regarding this area. The kNN acceleration thus allows a very
high acceleration of the search loop, without loss of the retrieval quality. The gain is mainly during the
inference and sort times. For an exhaustive selection, the time complexity of the inference is O(N) where
N is the size of the unlabeled dataset. For an accelerated selection, the complexity is rather O(k) where
k = 200 in our case. In addition, the sort is performed on much smaller sets of samples, that don’t exceed
a size of (N, + N, + (I' — 1) x b) x k vs. millions of samples for larger datasets. However, computing
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the kNNs themselves requires an additional cost. The kNN exhaustive search is O(N), which cancels the
acceleration gain of the selection phase. With an efficient indexing structure such as multi-probe locality
sensitive hashing|Joly & Buisson| (2008); Lv et al.| (2017, randomized kd-trees |Silpa-Anan & Hartley| (2008))
or PQ-code|Jegou et al.[(2010)), the complexity is typically O(N7) where v < 1 is the compression coefficient,
i.e. sublinear in the dataset size. In our framework, we don’t use indexing structures, but we bypass the
cost by pre-computing the kNNs for all dataset elements beforehand. The results are then stored and easily
accessed whenever needed. This way, the kNN computation cost is not included in the retrieval loop. This
cost can be further lowered with efficient approximation packages such as FAISS [Danopoulos et al.| (2019).

Table 3: Class coverage scores at iterations 5, 15 and 25, using PF-MA, with and without kNN acceleration.

metric kNN acceleration TmageNet-LT PlantNet300K
CLIP DINOv2 | CLIP DINOv2

yes 0.362 0.494 | 0.216 0.313

covs no 0.36 0.493 | 0204  0.298

on yes 0.741  0.794 0.47 0.594

15 no 0.773 0.79 0.488  0.604

cov yes 0.829  0.847 0.57 0.674

25 no 0.861 0.844 | 0.596 0.684

6 Conclusion

We present a novel Active Learning criterion for Novel Class Retrieval through Relevance Feedback. Our
PF-MA criterion is based on both samples ambiguity and their class membership, in order to gain enough
informativeness while fulfilling the retrieval task. Unlike existing strategies that satisfy one objective only at
a time, we show good performances across both objectives. We emphasize that while Most Positive already
works very well on small classes, we achieve good results for all class-of-interest sizes, discarding the need
for any prior knowledge. We showcase that our criterion presents satisfying performances with very small
annotation budgets, outperforming both classical and novel criteria in this aspect. In addition, our novel
class coverage metric allows for a better evaluation of the retrieval performances by allowing to take into
account the whole class patterns. To the best of our knowledge, our work is the first to introduce the use
of Active Learning strategies for Novel Class Retrieval purposes. Our findings lay the foundation for further
works to investigate other relevant aspects, such as the refinement and adaptation of the descriptor models
and the retrieval efficiency for all objects sizes.
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